
Proyecto DOMUS

IllaSynth

Mathieu Bosi, MMXI

Gràcia Territori Sonor

Centre comercial “Illa Diagonal”

Table of Contents
1 Introduction...4

2 IllaSynth..5

2.1Technical considerations..5
2.1.1About using generative synthesis..5
2.1.2About using samples..5
2.1.3About achieving independent zone-outputs...6
2.1.4About the reliability of PureData objects and externals..6

3 Software Overview..7
3.1 Directories layout...7
3.2 Adopted zone-routing mechanisms..8
3.3 Main Patch..8
3.4 Sub-systems patches...12

3.4.1 Import libraries and declare custom abstractions paths (1)..13
3.4.2 Date and time messages generation and broadcasting (2)..14

Festivities declaration...15
Date and time broadcast symbols..15

Integer values (no postfix letter)..15
Floating point values (ending with 'f')..15
Symbol values (ending with 's')..16

3.4.3 Temperature and humidity values retrieval (3)...17
3.4.4 Sound generation units: “orchestra” (4)..19

Samples...19
Natural...19
Percussive..20
Fantasy..20
Guitar melodies...20
Random notes..20
Samplers..20

3.4.5 Sound output system and zone monitoring options (6)..21
Zone gains computing...22

3.4.6 Sound level meters, one per zone (5)..22
4 Sound-file resources in IllaSynth..23

4.1 Compressed sound format: Ogg Vorbis..23
4.2 Use of the [sam~] abstraction with audio files...23

4.2.1 Updating the various samples folders...25
4.3 Using [sampler~] and the polyphonic sampler [sampler4x~]..26

4.3.1 Updating the samplers folder..27

page 2 of 23

1 Introduction
L'Illa Diagonal (Fig. 1) is a commercial center located in Avinguda Diagonal, Barcelona, hosting
several shops. While some of these shops put their own music inside of them (usually dance / pop
style), there also are shared areas and avenues where the clients walk to go from a shop to the other. In
these areas a large-scale sound diffusion system is being used. For this system the whole commercial
center is divided into 8 zones, each one located in a different part of the architectonic complex. This
division into zones can be seen in Fig. 2.

page 3 of 23

Fig. 1: A frontal view of Illa Diagonal.

Fig. 2: Illa Diagonal: division into the 8 zones.

2 IllaSynth
The purpose of IllaSynth is to generates music and soundscapes for these 8 zones in real-time, offering
a pleasant and non boring listening experience both to the visitors, and to the owners of the shops
located in the areas and venues in each zone. For this purpose, the free and open source Pure Data
computer music programming language has been chosen, in its extended version1.

2.1 Technical considerations

During the various development stages, some facts were learned, principally about the constrains of a
limited sound processing power and the limitations of pure generative sound synthesis. The following
considerations are meant for whom may take on with the future development of the D.O.M.U.S.
system.

2.1.1 About using generative synthesis

Computational resources can run out quickly when implementing pure generative sound synthesis.

Another caveat is this: for reality-like sounds, a sound synthesis model is generally not trivial to
implement, and once implemented, it will always be bound to the set of parameters that define it, the
very same bounds that make that sound belong to its category (e.g. a bird will not become a frog).

For imaginary sounds, the situation is a bit more free from the categories, however special attention is
required in the definition of what the control parameters will be, and to enable the maximum possible
variety with the minimum number of parameters. However, finding such a model and then finding the
set of effective parameters can become a daunting task.

So, due to all this implications, it is good to have some purely generative sound synthesis models,
however the best compromise is obtained by combining pure software synthesis with the sampled
approach.

2.1.2 About using samples

While samples don't have the flexibility of a generative model, they also are much easier to obtain and
use. By adequately combining all these samples, we can obtain a huge amount of combinations, for the
price of just adding enough sound samples.

Sampled sounds can be custom-produced. On the other hand, a huge amount of recordings is freely
available under the Creative Commons license on the www.freesound.org website. These recordings
come from worldwide and can be searched by keywords / category. IllaSynth uses many sounds from
the freesound database.

To support a big quantity / variety of sampled sounds, it would be desirable for sounds to be
compressed into some way. For IllaSynth, the Ogg Vorbis2 sound compression format has been
chosen. Ogg Vorbis is an Open Source and royalty-free lossy compression format, superior to similar
patented and non-free to use technologies like mp3 audio. Without using a compressed format, for
example 1 hour of recorded mono audio at CD quality would occupy about 320 Mega Bytes (MB). By
using the Vorbis compression format the same amount of sounds just takes 32 MB of disk space, which
means a 1:10 compression ratio, this without noticeable degradation in sound quality for a non Hi-Fi
system, like in our case. For comparison, in just 320 MB we can have 10 hours of sounds, in 1 GB

1 http://puredata.info/community/projects/software/pd-extended
2 http://en.wikipedia.org/wiki/Vorbis

page 4 of 23

http://www.freesound.org/
http://puredata.info/community/projects/software/pd-extended
http://en.wikipedia.org/wiki/Vorbis

about 31 hours, and so on.

2.1.3 About achieving independent zone-outputs

Due to limited CPU power it becomes necessary to share sound generation between the zones, at least
partially. It is also necessary to implement an easily controllable and robust sound routing mechanism.

Moreover the CPU consumption should always be below the point in which audio output starts to get
corrupted, or, in other words, the real-time constrains of the generative system are no longer met. For
this reason an always all-on approach has been chosen in IllaSynth, to avoid any possible accidental
breaking of the real-time constrain.

2.1.4 About the reliability of PureData objects and externals

While PureData is a wonderful and efficient tool to develop real-time audio applications, the
following problems were encountered:

• the [switch~] object, useful for selectively allocating DSP computing resources, apparently
tended to produce serious sound glitches (when switched off, a strong constant sound was
sometimes caused). You won't find this object in IllaSynth.

• The possibility to use relative paths with [oggread~] possible only under Windows OS
(partially resolved by using the [operating_system] object)

• OS dependent wildcards in [folder_list] (resolved using the [operating_system] object)

• A dangerous bug was found in the [freeverb~] reverberation object. This bug is insidious
because it only happens under OSX or Linux. A workaround was implemented in the [rev~]
wrapper-abstraction (see the abstraction for details).

• Dynamic signal routing was unusable due to bugs both in [send~] [receive~] and in the
[send13~] [receive13~] externals.

page 5 of 23

3 Software Overview
To better organize complexity, IllaSynth strongly follows Pure Data patches encapsulation principles
by using a quantity of sub-patches and abstractions, and often using the graph-on-parent (GOP)
functionality. In general, patches have been thoroughly commented and a clear layout and coding-style
has been adopted to ease reading and understanding of the code. So, while the best documentation of
the program is probably the code itself, an initial overview of the software will be now given, to
facilitate the initial understanding of the implemented system architecture.

3.1 Directories layout

To better manage the various patches and resources, all files have been organized in folders.
At the root level we find the main patch domus_main.pd and some other abstractions that have been
put at root level to access sound resources. These abstractions are:

• clima : reads the special files temperaturaOK.tsv and
humedadOK.tsv provided by the underlying machine

• sam~ sample player, accessing the samples/* folders
• sampler~ used for reproducing sample sets stored in the samplers

folder.

The folders are:

Sound resources folders
• samples various sound samples that have been divided into

categories.
• samplers sets of sampled instruments organized by instrument

name and MIDI note number
• RECORDINGS used to store the excerpts recorded from the main

patch

PureData Abstractions folders
• rj rj library PureData abstractions
• synths various synthesizers abstractions
• util various utilities abstractions
• percussive percussive synthesizer abstractions
• nature nature sounds generators
• melody abstractions to generate melodies
• evtgen generation of events
• datetime utilities to handle date and time
• fxs sound processing effects

page 6 of 23

http://en.flossmanuals.net/pure-data/ch044_graph-on-parent/
http://en.flossmanuals.net/pure-data/ch042_abstractions/
http://en.flossmanuals.net/pure-data/ch041_subpatches/

3.2 Adopted zone-routing mechanisms

To allow some differentiation between the zones while mantaining low CPU usage and a good control
on the quantity of sounds, a lightweight combinatory approach has been chosen, after various
tentatives.

The used routing system is based on:

• the [pan8~] abstraction, which sends a signal to a single zone with automatic cross-fades when
the zone is changed. [pan8~] is normally used in combination with random counters and
modulo offsets (see for instance Fig. 13 at page 19)

• zone audio buses: zs1, zs2, ..., zs8 used to send signals to individual zones
• zs_all, used to send a signal simultaneously to all zones

3.3 Main Patch

The main patch is called domus_main.pd and is automatically loaded at system startup. The software
can be explored starting from this patch which encloses all the needed sub-modules, as it can be seen
in Fig. 3.

page 7 of 23

Fig. 3: the main patch encloses all the various sub-systems, like DSP handling, output
monitoring/recording, date and time functions, and soundscape generators.

On the left part we can see:

• the DSP handling part (top)
• DSP on/off toggle (yellow) and CPU usage statistics
• STOP button (red) to immediately shut down the DSP

• the Monitoring and recording part (bottom) composed of:
• VU-meter showing the level of the monitored signal
• a small GUI that allows to record 16-bits mono WAV files. Recordings are saved in the

folder RECORDINGS with a name like name rec_nnnn.wav where the number nnnn can be
adjusted with the small +/- buttons.

On the right part of the main patch we find all the core sub-systems (numbered in the patch, see Fig.
6). Each one of them is briefly reviewed in the following sections.

.

page 8 of 23

Hint: to open a sub-patch or an abstraction, just click on its object-box when edit-mode is
disabled. During edit-mode, just use the Ctrl + click combination. To open a graph on
parent abstraction / sub-patch, you'll always have to right-click on its canavas and then
choose the 'Open' option.

Fig. 4: The DSP control panel

Fig. 5: The monitoring and recording GUI

3.4 Sub-systems patches

Follows here a brief description of each one of the core sub-patches present in the main patch.

 (1) Import libraries and declare custom abstractions paths

 (2) Date and time messages generation

 (3) Temperature and humidity values retrieval

 (4) Sound generation units

 (5) Sound level meters, one per zone

 (6) Sound output system and zone monitoring options

page 9 of 23

Fig. 6: The right part of the Main
Patch

3.4.1 Import libraries and declare custom abstractions paths (1)

This sub-patch encloses all the needed paths declarations in order to make the various abstractions
accessible from anywhere inside the IllaSynth patches while retaining the ability to keep them
organized into separate folders. For this purpose the [declare] object is used using the -path option
(notice that the objects arguments coincide with the above described folder names).

.

page 10 of 23

Fig. 7: paths and libraries declarations

3.4.2 Date and time messages generation and broadcasting (2)

This GOP sub-patch encloses all the date and time functionalities. Clicking on the various buttons
(bangs) will bring up the enclosed sub-patch. For example, clicking on the “Festivity Broadcaster”
button will pop-up the sub-patch responsible for broadcasting the festivities.

• Hyperlinks ([pddplink] objects, in the bottom left part) have been provided to the local files
containing the festivities definition, in datetime/fiestas_catalanas.txt

• the list of broadcast messages, in datetime/date_time_symbol-values.txt.

page 11 of 23

Hint: in IllaSynth many messages are broadcasted by mean of the [sv broadcast_address]
abstraction (short for send+value). These messages can be accessed in two ways:

• using the [lv broadcast_address] abstraction (lv stands for list-value)
• using the standard PureData receive system, with [receive broadcast_address]

Fig. 8: Date and time messages control panel

Festivities declaration

Festivities are declared in the datetime/fiestas_catalanas.txt text file. Each festivity occupies a
line that contains 3 values: month name, day of month number, and festivity name. The current
contents of the file are the following:

abril 23 san_jordi
junio 24 san_juan
septiembre 11 dia_nacional_cataluña
enero 1 año_nuevo
enero 6 los_reyes
mayo 1 dia_internacional_trabajo
agosto 15 asuncion_maria
octubre 12 fiesta_nacional_españa
noviembre 1 todos_los_santos
diciembre 6 constitucion_española
diciembre 8 inmaculada_concepcion

If the month and day match with any of the entries, the festivity name is automatically broadcasted.
This behavior can be used for triggering special soundscapes.

Date and time broadcast symbols

Follows here a list of all the broadcast date/time messages. This reference list can be found in the
datetime/date_time_symbol-values.txt.

Integer values (no postfix letter)

• YEAR current year e.g. 2011
• MONTH_YEAR month of year between 1 and 12
• DAY_YEAR day in a year between 1 and 365 (366 in leap years)
• DAY_MONTH day in a month between 1 and 28 to 31
• WEEK_YEAR week of year between 1 and 51
• DAY_WEEK day of week between 1 and 7
• DAYS_IN_MONTH day of month between 1 and 28-31
• HOURS_DAY hour of day between 0 and 24
• MINUTES_HOUR minutes in hour between 0 and 60
• SECONDS_MINUTE seconds in minute between 0 and 60
• MSECS milliseconds between 0 and 1000
• DAYLIGHT_SAVING daylight-saving time 1 if daylight-saving, 0 otherwise

Floating point values (ending with 'f')

• MONTH_YEARf month in a year between 1 and 12
• DAY_YEARf day in a year between 1 and 365 (366 in leap years)
• DAY_MONTHf day in a month between 1 and 28 to 31
• YEAR_PERCENTf year completion between 0 (beginning) and 1 (end)

page 12 of 23

• MONTH_PERCENTf month completion between 0 (beginning) and 1 (end)
• YEARf float year number sum of YEAR and YEAR_PERCENTf
• DAY_WEEKf float day of week between 0 and 7
• WEEK_PERCENTf week completion between 0 (beginning) and 1 (end)
• DAY_PERCENTf day completion between 0 (0:00) and 1 (24:00)
• MINUTES_HOURf minutes in hour between 0 and 60
• HOUR_PERCENTf hour completion between 0 (hour beginning) and 1 (hour

end)
• MINUTE_PERCENTf minute completion between 0 (beginning) and 1 (end)
• SECONDS_MINUTEf seconds in a minute between 0 and 60
• SECOND_PERCENTf fraction of second between 0 (beginning) and 1 (end), with

millisecond resolution

Symbol values (ending with 's')

• YEAR+MONTH+DAYs symbol-date e.g. the symbol 2011_26_01
• MONTH+DAYs symbol month-day e.g. 12_30 (for december 30th)
• HOURS+MINUTESs symbol-hour e.g. 14_30 (for 14:30)
• MONTH_NAMEs month name month spanish name
• DAY_WEEK_NAMEs day of week name day spanish name
• FIESTAs festivity name one of the values in the 3rd column of

 datetime/fiestas_catalanas.txt

page 13 of 23

3.4.3 Temperature and humidity values retrieval (3)

This sub-patch periodically reads the humidity (in percentage) and temperature (in Celsius degrees)
values. This is achieved by reading two special files named temperaturaOK.tsv and humedadOK.tsv.
These files are not visible in the IllaSynth path but are anyway accessible. See the actual file-reading
code inside the [clima] abstraction.
These values are broadcasted with the [sv] abstraction and can be used to influence the sound
generation processes.

page 14 of 23

Fig. 9: Temperature and humidity reading and
broadcasting

3.4.4 Sound generation units: “orchestra” (4)

This is the sub-patch where all the actual sound generation takes place, let's call it an “orchestra”. In
this orchestra all the music and sound generating units can be divided into groups or categories, always
following the encapsulation design principle. Each category will be now briefly described.
For details on each category's contents and implementations, please refer to their single patches.

Samples

in this sub-patch there are various sample playback units. The samples playback units use the samples
located into the samples folder. At the moment this folder contains the following folders-categories:

• birds contains various birds recordings
• water contains recordings of various water sounds
• objects recordings of various objects
• piano recordings of various short piano improvisation excerpts

These sounds have been taken from:
• the previous D.O.M.U.S. version
• the www.freesound.org website (all sounds are under the Creative Commons license)

Details on adding more samples can be found in section 4.2 (page 19).

Natural

Here various natural sounds synthesizers have been implemented, for instance cicadas, frogs, locusts,
etc. The models have been adapted from those described in [1]. The various generators are activated
depending on the time of day.

page 15 of 23

Fig. 10: The sounds and music generation "orchestra" is here

http://www.freesound.org/

Percussive

Various synthesis models of percussive sounds have been implemented in this part of the orchestra,
always following the techniques described in [1].

Fantasy

This part of the orchestra is devoted to the generation of imaginary sounds, for instance the underwater
voices of whales.

Guitar melodies

In this sub-patch various guitar melodies are generated in various scales, rhythms and tonalities. The
guitar sound is obtained by mean of a guitar sound synthesizer.

Random notes

Here some simple pseudo-random notes are generated, to increase the variety of the melodic content.

Samplers

Samplers are sets of samples containing the recording of various instruments for a range of MIDI note
numbers. The existing samplers have been adapted from these already present in the previous version
of D.O.M.U.S. For details on working with samplers, please refer to section 4.3 (page 21).

page 16 of 23

3.4.5 Sound output system and zone monitoring options (6)

In this sub-patch, all the signal buses sent from the orchestra are received, mixed, limited and output to
the 8 channels of the sound card.

From top to bottom, each bus/channel (zs1, …, zs8) is in turn:

1. received with [catch~]

2. the gain of each channel is adjusted depending on the time of day (see the “Zone gains
computing” paragraph below)

3. the volume is limited so that no saturation can happen

4. the signal level is sent to a visual monitoring stage (per channel VU-meter)

5. finally each channel is routed to its zone.

Always here, the all-channels bus zs_all is received and selective optional channel monitoring is
performed (right part of the patch).

page 17 of 23

Fig. 11: The sound output system

Zone gains computing

Depending on the amount of persons present in the commercial center, volume needed to maintain an
audible sound level varies significantly. The gain factors for each channel ultimately depend on the
time of day. This temporal gain information is enclosed in the sound output system sub-patch (see Fig.
11, right below the [catch~] objects).

3.4.6 Sound level meters, one per zone (5)

To monitor in software the output level of each channel, a VU-meter is provided for each zone. Sound
intensities are measured in dB (where 0 dB corresponds to the maximum digital signal value of 1.0).
[vu~] are implemented as custom GOP abstractions to increase the PureData GUI efficiency.

page 18 of 23

Fig. 12: Time-of-day gains computation.

4 Sound-file resources in IllaSynth
IllaSynth has been designed to enable an easy integration of compressed sound samples sets, both in
the format of normal individual sound samples and sample-banks, for sampled musical instruments.

4.1 Compressed sound format: Ogg Vorbis

Sampled sounds have an important role in IllaSynth. The Ogg Vorbis compression format has been
chosen to alleviate disk space and access time restrictions for long samples.
All the sound files used in the system (both samples and samplers) have been encoded using these
parameters: 80 kbps, 44100 Hz, mono, which offer a compression ratio of about 1:10 without a
meaningful loss of sound quality.

4.2 Use of the [sam~] abstraction with audio files

The [sam~] GOP abstraction is used to replay Ogg audio files. We can find an example of its use in the
SAMPLES abstraction found in the “orchestra” sub-patch.

page 19 of 23

Fig. 13: The [sam~] abstractions are
enclosed into a proper sub-patch (screenshot
from [pd SAMPLES] in the "orchestra")

In Fig. 14 We can see how the [sam~] abstraction can be used. Each time a bang is received, a random
sample is played from a given folder. The abstraction's parameters are the path of the samples folder
from where to pick the random file (relative to IllaSynth software root directory) and the duration of
the fading time to apply at the beginning and end of each sample. The left output is the output signal
and the right one sends a bang when playback of current file ends. This output is often used to generate
a probabilistic chain triggering of more samples. The abstraction also gives a feedback on the file
currently being played and the playback level and status.

4.2.1 Updating the various samples folders

To add more samples to an already existing samples folder it's only necessary to put the new files
there. The [sam~] abstraction automatically accesses any new added file without the need of reloading
the IllaSynth software.
In the case of adding a new folder/category, it will be necessary to:

1. add the folder and the sound samples, encoded in Ogg Vorbis format
2. add a new [sam~] instance(s) referring to the new folder.

The already existing [sam~] sub-patches (for instance [pd NACHO PIANO]) can be used as a
template, or new configurations can be created.

page 20 of 23

Fig. 14: The contents of the [pd NACHO PIANO] sub-patch in Fig. 13

4.3 Using [sampler~] and the polyphonic sampler [sampler4x~]

The [sampler~] and [sampler4x~] abstractions are based on [sam~] and can be used to automatically
trigger the playback of musical instruments sample banks. These samplebanks are basically sets of
files having as name:

<instrument name>_<n>.ogg (e.g. PIANO_60.ogg)

where <n> corresponds to the sample MIDI note number. The [sampler] abstraction accept the
following initialization parameters:

• samplers folder where to look in (in our case the samplers folder)
• sampler <instrument-name> (e.g. PIANO or ARPA)
• valid MIDI note range (min, max)

The abstraction receives the MIDI note number to be played and reproduces the corresponding sample
file. [sampler4x~] is just a wrapper around 4 instances of [sampler~] to enable a polyphony of 4 notes.
The active instrument-name and range can be changed at run time. For more details on this, please
refer to the [pd SAMPLERS] sub-patch (Fig. 15) in the “orchestra” sub-patch.

page 21 of 23

Fig. 15: Arrangement of the [pd SAMPLERS] sub-patch.
The active sampler is chosen in [pd Select_Sampler].

4.3.1 Updating the samplers folder

New samplers can be put into this folder (or in another one), the only requirement for the samples
names to be in the already mentioned way: <instrument name>_<n>.ogg.
After adding the new sampler's files, to add it to the pool of triggered samplers just edit the [pd
Select_Sampler] sub-patch (Fig. 16).

page 22 of 23

Fig. 16: The [pd Select_Sampler] sub-patch, from the [pd SAMPLERS] orchestra sub-patch.

References

[1] Andy Farnell, Designing Sound - Practical synthetic sound design for film, games and interactive
media using dataflow. London: Applied Scientific Press Ltd, 2008

[2] www.projectedomus.blogspot.com (various references in the posts by Mathieu Bosi)

page 23 of 23

http://www.projectedomus.blogspot.com/

	1 Introduction
	L'Illa Diagonal (Fig. 1) is a commercial center located in Avinguda Diagonal, Barcelona, hosting several shops. While some of these shops put their own music inside of them (usually dance / pop style), there also are shared areas and avenues where the clients walk to go from a shop to the other. In these areas a large-scale sound diffusion system is being used. For this system the whole commercial center is divided into 8 zones, each one located in a different part of the architectonic complex. This division into zones can be seen in Fig. 2.
	2 IllaSynth
	The purpose of IllaSynth is to generates music and soundscapes for these 8 zones in real-time, offering a pleasant and non boring listening experience both to the visitors, and to the owners of the shops located in the areas and venues in each zone. For this purpose, the free and open source Pure Data computer music programming language has been chosen, in its extended version1.
	2.1 Technical considerations
	2.1.1 About using generative synthesis
	2.1.2 About using samples
	2.1.3 About achieving independent zone-outputs
	2.1.4 About the reliability of PureData objects and externals

	3 Software Overview
	3.1 Directories layout
	3.2 Adopted zone-routing mechanisms

	zone audio buses: zs1, zs2, ..., zs8 used to send signals to individual zones
	zs_all, used to send a signal simultaneously to all zones
	3.3 Main Patch
	3.4 Sub-systems patches
	3.4.1 Import libraries and declare custom abstractions paths (1)
	.
	3.4.2 Date and time messages generation and broadcasting (2)
	Festivities declaration
	Date and time broadcast symbols
	Integer values (no postfix letter)
	Floating point values (ending with 'f')
	Symbol values (ending with 's')

	3.4.3 Temperature and humidity values retrieval (3)
	3.4.4 Sound generation units: “orchestra” (4)
	Samples
	Natural
	Percussive
	Fantasy
	Guitar melodies
	Random notes
	Samplers

	3.4.5 Sound output system and zone monitoring options (6)
	Zone gains computing

	3.4.6 Sound level meters, one per zone (5)

	4 Sound-file resources in IllaSynth
	4.1 Compressed sound format: Ogg Vorbis
	4.2 Use of the [sam~] abstraction with audio files
	4.2.1 Updating the various samples folders

	4.3 Using [sampler~] and the polyphonic sampler [sampler4x~]
	4.3.1 Updating the samplers folder

